Fractal 3D

다운로드 Fractal 3D

호환 APK 다운로드


다운로드 개발자 평점 리뷰
Fractal Space
다운로드 Apk
Playstore 다운로드 →
Haze Games 4.7 69,406
Fractal Space
다운로드 APK
Haze Games 4.7 69,406
MandelBrowser
다운로드 APK
Tomasz Śmigielski 4.5 1,666
Fractal Eye - Fractal
Image Cr

다운로드 APK
Self Similar Tech 4.2 166
Fractal Tunnels Live
Wallpaper

다운로드 APK
Mobile Visuals 4.6 1,859
Fraksl
다운로드 APK
Emiel Harmsen 4.6 6,470
Magic Fractals 2D
Relaxing art

다운로드 APK
Marvin Krüger Art &
Visuals
4.4 80

다운로드 및 설치 Fractal 3D Android에서

   

다른 한편에서는 원활한 경험을하려면 파일을 장치에 다운로드 한 후 파일을 사용하는 방법을 알아야합니다. APK 파일은 Android 앱의 원시 파일이며 Android 패키지 키트를 의미합니다. 모바일 앱 배포 및 설치를 위해 Android 운영 체제에서 사용하는 패키지 파일 형식입니다.
네 가지 간단한 단계에서 사용 방법을 알려 드리겠습니다. Fractal 3D 귀하의 전화 번호.


1 단계 : 다운로드 Fractal 3D 귀하의 기기에서

아래의 다운로드 미러를 사용하여 지금 당장이 작업을 수행 할 수 있습니다. 그것의 99 % 보장 . 컴퓨터에서 파일을 다운로드하는 경우, 그것을 안드로이드 장치로 옮기십시오.  


2 단계 : 기기에 타사 앱 허용

설치하려면 Fractal 3D 타사 응용 프로그램이 현재 설치 소스로 활성화되어 있는지 확인해야합니다. 메뉴 > 설정 > 보안> 으로 이동하여 알 수없는 소스 를 선택하여 휴대 전화가 Google Play 스토어 이외의 소스에서 앱을 설치하도록 허용하십시오.


3 단계 : 파일 관리자로 이동

이제 위치를 찾으십시오 Fractal 3D 방금 다운로드 한 파일입니다.
일단 당신이 Fractal 3D 파일을 클릭하면 일반 설치 프로세스가 시작됩니다. 메시지가 나타나면 "예" 를 누르십시오. 그러나 화면의 모든 메시지를 읽으십시오.


4 단계 : 즐기십시오

Fractal 3D 이 (가) 귀하의 기기에 설치되었습니다. 즐겨!


새로운 내용 Fractal 3D v1.06

개발자 설명

Description - Fractal 3D is a powerful tool for generating and exploring fractals such as the Mandelbrot and Julia sets. The 2D view allows for easy surveying/customization and .tiff export, while the 3D view captures spectacular views from all angles (export not yet supported). Multi-processor support and an OpenGL powered renderer allow for blazing fast speed. With double precision 64-bit mathematics, Fractal 3D is capable of resolving detailed images up to an incredible 1,000,000,000,000x magnification level! To give perspective, a single atom of carbon magnified one trillion times would be longer than two football fields. Each fractal is fully customizable and changes happening in real time. First adjust the fractal set type, equation power/ constants, iterations, resolution, color scheme, and smoothing options. Once the fractal is rendered it can be explored with intuitive panning and zooming controls. After a place of interest is found, customize the 3D view by rotating the fractal, moving the camera, and adjusting the lighting. Due to the nature of fractals, the number of unique patterns to be found is limitless. Use the 2D rendered images for desktop wallpaper, printed artwork, or just enjoy the beauty of exploring one of a kind images created by pure mathematics. Fractal information from Wikipedia - A fractal has been defined as "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term fractal was coined by Benoît Mandelbrot in 1975 and was derived from the Latin frāctus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. There are several examples of fractals, which are defined as portraying exact self-similarity, quasi self-similarity, or statistical self-similarity. While fractals are a mathematical construct, they are found in nature, which has led to their inclusion in artwork. They are useful in medicine, soil mechanics, seismology, and technical analysis. A fractal often has the following features: It has a fine structure at arbitrarily small scales. It is too irregular to be easily described in traditional Euclidean geometric language. It has a simple and recursive definition. Because they appear similar at all levels of magnification, fractals are often considered to be infinitely complex (in informal terms). Natural objects that are approximated by fractals to a degree include clouds, mountain ranges, lightning bolts, coastlines, snow flakes, various vegetables (cauliflower and broccoli), and animal coloration patterns. However, not all self-similar objects are fractals —for example, the real line (a straight Euclidean line) is formally self-similar but fails to have other fractal characteristics; for instance, it is regular enough to be described in Euclidean terms.

더 Graphics & Design 좋아하는 앱 Fractal 3D

자세히보기 Nuclear Nova Software


keyboard_arrow_up